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ABSTRACT

We use the relativistic string to model a QCD flux tube with fixed ends. We
demonstrate that the energy of the string well approximates the lattice energies
of states with the same quantum numbers recently found by Morningstar et al.

Increasingly sophisticated lattice QCD simulations provide strong evidence that
QCD predicts the formation of flux tubes between quarks and antiquarks that are
separated by more than a fraction of a fermi. In this talk we will present a relativistic
formulation of the effective dynamics of these flux tubes.

The leading order relativistic action for the center of the flux tube should simply
be the string tension times the area swept out by the world-sheet of the string.

Hybrid mesons are quark-antiquark boundstates in which the glue is in an excited
state. These states are represented by the excited states of the flux tube. The first
description of these states by Isgur and Paton! was essentially non-relativistic. More
recently, Chris Michael? showed that his lattice simulations were consistent with the
energy formula for a fixed relativistic string.

Lattice QCD allows us to ignore the quark contributions to the action and exam-
ine the dynamics of the glue alone. We give a short explanation of the string theory
describing the dynamics and quantum numbers of a flux tube with fixed ends.

We start with the Nambu-Goto-Polyakov action, which is the string tension a
times the area of the string world-sheet, with fixed end boundary conditions,

Sxap = —g / dr /0 do VR hP9,X "3, X 1, X(0,7) = x1, X(m,7) = Xa.

Classically, this action is equivalent to the square root Nambu-Goto action. The equa-
tions of motion that follow from the action are

1
OX* = 0,(V—hh®0,X") =0, 0, X X, = 5 has R0, X" 04X . (1)
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There is a reparametrization invariance of the theory that must be gauge fixed.
We choose the orthonormal gauge condition, v/—hh® = n%_ and use the residual
symmetry of the action to choose our time coordinate 7 in terms of the time in the rest
frame of the glue, X° = f:—z 7. We may solve the equations of motion (1) by making a
mode expansion of the string position.

X(o,7) = — —sin(no)e —inT 2
) = TR-—— go , ©)
where R = x; — x;. Upon quantization, the Fourier coefficients al become indepen-
dent oscillators obeying the commutation relations [&},, &2,] = m 0y 1m0 0”. The second
equation of motion in (1) may be expressed in terms of its Fourier coefficients,

S - =0, with G = _R\/? (3)
m m

This equation of motion is actually a constraint in the Dirac sense and will be used
to define physical states. We use the Gupta-Bleuler method, in which we require that
the “annihilation” parts of the constraints annihilate the physical states, to implement
the constraints. The constraint conditions L, = 0 are in fact second class because even
classically they do not form a closed algebra.

We select the physical states from the Fock space of the oscillators. The states
of the Fock space are fully described by the number of phonons in each of the modes.

Thus we will have N1, No, ... phonons in the n = 1,2, ... modes, etc.
Fockspace = |R,Ny,Ny,...),
-n |¢’physical> = 07 n Z 0. (4)

The Virasoro conditions (4) for non-zero n eliminate the “longitudinal” modes. To see
this, we imagine taking R — oo and ignoring the piece quadratic in the oscillators.

L, ~ Ra*=RR-dy,) (5)

For ease in describing the physical states, we will assume that we can treat them as
strictly transverse for any fixed separation R. The same analysis can be applied to the
exact states with more work, yielding the same results. It is convenient to work in the
helicity basis for the transverse phonons.

The mass-shell relation (P%)? = (aR)? + 2ma(N + ¢) follows from the zero-mode
Virasoro condition.

— 1 0\2 2
Ly = 2m{—(P) + (aR)* + 2ma(N + o)},
N = G_p- b, = > n(NS+N;), (6)
n=0 n=1

where N,© and N, are respectively the number of phonons in the mode n with positive
and negative helicity.



The first quantum number we examine is the angular momentum, A, of the glue
along the quark axis. We find

. VRPN I > _

n=1 n=1
The second quantum number of the glue is its C'P value. Charge conjugation turns a
quark into an antiquark and reverses the flux. The effect is to take 0 — m — o. Parity

then simply takes a position vector to its negative. We find
X0)D - X(r—0) = oD (D) = CP=(-1)V. (8)

The last quantum number is the parity under reflection in a plane containing the quark
axis. This is a symmetry of the system and implies a degeneracy in the +A and —A
states. For states with A = 0, the states may be classified by their parity under this
reflection.

We use the standard molecular notation to la- Fig. 1. The action of CP.
bel the various string excitation states. States with
A=0,1,2,... are denoted by X, II, A, ..., which is g

just a fancy way of saying S, P, D, .... The state’s

value of C'P is denoted by a subscript g or u de-

pending on whether it is even or odd. Finally, the c

Y. states are superscripted with the value of the re-

flection parity through a plane containing the quark

axis. Q
Colin Morningstar graciously sent us the results® of one of his lattice simulations

for the energy of two fixed quarks. We analyzed these data by fitting the lowest state

with N = 0 string energy plus a one gluon exchange potential,

Ao
Ver = — 36; +/(ar)? 4+ 2mac + C. 9)

to obtain the best fit values

o=0

a, = 0.234, ard =1.34,
Crq = —2.51, c =0.

We then compare the data to the now parameter-free curves

V = \/(ar)2 + 2ma(N +¢) + C  (solid lines),
V = % + \/(ar)2 + 2wa(N +¢) + C  (dashed lines). (10)
T




The first potential is just a shifted string energy (lattice data do not determine
absolute energies) while the second has an octet one gluon exchange potential added
in. The argument for this is that as » — 0 the string may continue on to a single
constituent gluon plus quark-antiquark state, in which case the quarks are in a color
octet state. It is important to note that these are not “fits,” but are “predictions” as we
have determined all the parameters from the lowest energy X1 state. The data either
fit or do not fit. Notice that there is general agreement for the states ¥, IT, and A,
with the II states being especially striking. On the other hand, the >~ states do not
agree well.

We have shown by construction that
single relativistic strings can be consis- 70
tently constructed in D = 4 to model flux
tubes. Though this theory is only an ef-
fective theory, it can be pushed quite far.
We found that recent lattice data were
reasonably well predicted by relativistic
string models, except for the X~ states.
The X~ states are a puzzle in this formal-
ism, though Chris Michael reminds us in
his plenary talk that ¥, and II, must be
degenerate at r = 0.

Fig. 2. The ¥ states. (A = 0)
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Fig. 3. The II states. (A = 1) Fig. 4. The A states. (A = 2)
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